麻豆123_99爱在线视频_蜜桃视频在线免费观看_两个奶被揉到高潮视频_久操视频在线看_亚洲精品影片

設為首頁 | 加入收藏
13585522224

產品分類

您的位置:首頁 > 產品展示 > 鋁合金 > AA2090,AA2190銅鋯鋰鋁合金化學成分鋁鋰合金力學性能
AA2090,AA2190銅鋯鋰鋁合金化學成分鋁鋰合金力學性能 AA2090,AA2190銅鋯鋰鋁合金化學成分鋁鋰合金力學性能 AA2090,AA2190銅鋯鋰鋁合金化學成分鋁鋰合金力學性能

AA2090,AA2190銅鋯鋰鋁合金化學成分鋁鋰合金力學性能

Some of the most important commercial alloys in this class include 2090, 2091, 8090, and Weldalite 049 that were introduced in the 1980s. The table below shows the chemical composition of these alloys.

Aluminum-lithium alloys (AL-Li) were developed primarily as direct replacements for existing aluminum alloys to reduce the weight of aircraft and aerospace structures. It has been realized that the most efficient way of doing this is to develop low density materials, since weight reduction through reduced component size often leads to low stiffness parts and reduced fatigue life. Typical components that benefit from low density alloys include structural members in airframes, aerospace vehicle skins, and liquid oxygen and hydrogen fuel tanks in spacecraft.

Aluminum producers began major development of aluminum-lithium alloys in the 1970s with the objective of introducing light weight, high stiffness aluminum alloys that could be fabricated on existing equipment and components could be handled and assembled using established techniques. Some of the most important commercial alloys in this class include 2090, 2091, 8090, and Weldalite 049 that were introduced in the 1980s. The table below shows the chemical composition of these alloys.

Composition of aluminum-lithium alloys (wt. %)

Alloy???? Cu?? Li?? Zr?? Others
2090????? 2.7? 2.2? 0.12??? -
2091????? 2.1? 2.0? 0.1???? -
8090????? 1.3? 2.45 0.12? 0.95 Mg
Weldalite 5.4? 1.3? 0.14? 0.4 Ag
049?????????????????????? 0.4 Mg
?

Pros and Cons

The advantages of Al-Li alloys over conventional aluminum alloys include relatively low densities, high elastic modulus, excellent fatigue and cryogenic strength and toughness properties, and superior fatigue crack growth resistance. The last property is a key factor for damage-tolerant aircraft design. However, it has been discovered that the high resistance to fatigue crack growth is due to a jagged crack path through the material that produces a large amount of roughness-induced crack closure under tension dominated loading. Crack closure is a phenomenon first documented in the 1970s that reduces the severity of the stress intensity at the crack tip under an externally applied load. It is therefore beneficial, provided it can be counted on to exist. Unfortunately, loading conditions that contain compression or compressive overloads, that flatten the crack surfaces, reduce or eliminate crack closure and cause crack growth rates to accelerate significantly.

Another disadvantage of these alloys is that in the strongest (desirable) heat treated conditions, the mechanical properties are often highly anisotropic. There exists, for example, significantly depressed ductility and fracture toughness in the short transverse direction. Another drawback is a very high crack growth rate for microstructurally short cracks which potentially allows for fast crack initiation. This could mean relatively early cracking in high stress regions such as rivet holes.

Current Usage

Aluminum-lithium alloys have not yet received the widespread usage and acceptance hoped y the commercial producers. However, some aluminum-lithium alloys have been utilized on recent commercial jetliner airframes and the material is used significantly in the EH101 helicopter. In addition, several AL-LI alloys are :under consideration” for a wide variety of developmental and experimental aircraft and space vehicles. The cost of Al-Li alloys is typically three to five times that of the conventional aluminum alloys they are intended to replace. This is due partly to the relatively high cost of Lithium and also to high processing and handling costs for the material.

?
Metallurgy and Properties

????? The lithium content of wrought Al-Li alloys cannot exceed the solubility limit of 4.2% Li in aluminum. In practice, the Li content is generally less (except in certain powder-metallurgy materials discussed later.) Lithium is the lightest metallic element. It has an atomic mass of about7 g/mol, a solid density of0.534 g/cm3at 20oC, a BCC crystal structure and a melting temperature of 181oC. Elemental aluminum has a FCC crystal structure and a solid density of2.7 g/cm3 at 20oC. Each 1% of lithium reduces the density of an AL-Li alloy by about 3% and increases the stiffness by about 5%.

????? High strength AL-Li alloys are obtained by precipitation heat treatments similar to those used for conventional al-alloys, with some variations. Many of the AL-Li alloys achieve peak strength only if cold-work (stretching) is performed prior to the precipitation, or age-hardening, treatment. Furthermore, ancillary key alloy elements, such as zirconium (Zr) are added to control the grain microstructure during heat treatment. The mechanical properties of some near-peak aged hardened (-T8x) AL-Li alloys are given in the table below.


Mechanical properties of typical near-peak aged AL-Li alloys

Alloy? Density?? Ductility? Elastic? Tensile?? Longitudinal??? Melting
????? (g/cm3)???? ( El % )? Modulus? Strength?????? Klc?????? Temperature
???????????????????????????? (GPa)???? (MPa)???? (MPa m1/2)????? (oC)
2090?? 2.59??????? 3-6??????? 76?????? 500?????????? 44???????? 580-660
2091?? 2.58???????? 6???????? 75?????? 550????????? >130??????? 560-670
8090?? 2.55??????? 4-5??????? 77?????? 480?????????? 75???????? 600-655

????? Alloy 2090 was developed as a replacement for 7075-T6, offering 8% lower density and 10% higher stiffness than the conventional alloy that is used heavily in aircraft structures. The 2090 alloy also offers superior corrosion resistance in salt-spray (marine) environment than 7075-T6.

????? Alloy 2091 was developed as a replacement for conventional aluminum alloy 2024-T3, offering 8% lower density and 7% higher modulus as well as superior damage tolerance.

????? Alloy 8090 was developed as a replacement for some of the most long serving of the commercial aluminum alloys, namely 2014 and 2024. Alloy 8090 has 10% lower density and 11% higher modulus than these conventional counterparts, and 8090 exhibits superior mechanical properties at cryogenic temperatures.

????? The alloy that is marketed under the trade name Weldalite 049, as its name suggest, is a weldable Al-Li alloy designed to replace 2219 and2014 inspacecraft launch systems. The density of Weldalite 049 is2.7 g/cm3 (about the same as its conventional counterparts), it has about 5% higher modulus than 2024, and tensile strengths of forged parts in excess of 700 MPa have been reported.

????? The success of failure of the current applications of these advanced alloys will likely determine their engineering significance in the long-term.

以上資料由上海艾荔艾金屬材料有限公司提供,歡迎新老客戶來電洽購。

本文來自上海艾荔艾金屬材料有限公司http://m.jshcn.cn,轉載請注明出處。

主站蜘蛛池模板: 久草在线|粉嫩=av一区二区在线播放免费|丁香五月天综合缴情网|激情五月俺也去狠狠爱|天天做夜夜爱|欧美专区亚洲 | 免费无码又爽又刺激高潮的动漫|欧美日日日|亚洲=aV无码一区二区三区在线播放|国产九九=av|中文字幕无码视频专区|中文字幕一区二区三区手机版 | 在线观看国产免费|亚洲免费成人在线视频|日韩免费一级毛片|国产综合久久|爱情岛论坛亚洲品质自拍hd|欧美成人免费一区二区 | 日本成熟少妇喷浆视频|女性裸体啪啪无遮挡免费网站|99色热|日日夜夜草|99re在线视频播放|夜夜操=av | 国产高清精品亚洲а∨|一本久道久久综合狠狠爱亚洲精品|久久国产福利|久久久久www|无码人妻精品一区二区三区99不卡|亚V=a芒果乱码一二三四区别 | 国产草莓精品国产=av片国产|91影视在线|76少妇国内精品视频|中文字幕人妻丝袜美腿乱|国产日韩欧美视频免费看|国产精品久久无码一区 | 不够善良的我们在线观看|亚洲国产欧美在线成人=a=a=a=a|欧美视频一区在线观看|日日干=av|91亚洲精品久久久|九9热这里真品2 | 一级做=a免费视频|这里只有精品一区二区国产|国产熟女乱子视频正在播放|日韩h在线观看|日韩精品免费视频|麻豆成人影院 | gogogo高清在线观看中文版二|色老板在线永久免费视频|国产精品美女自拍|不卡网免费理论影院|97碰在线视频|丰满岳乱妇三级高清 | 国产一区二区三区精品久久久|欧美午夜一区二区|久草新免费|91=av成人|男人午夜在线|亚洲欧美国产vr在线观 | 成人国产午夜在线观看|久久综合九色综合97欧美|99视频免费观看|久久久久久久国产精品毛片|久久99精品国产99久久|天堂成人国产精品一区 | 一本一道波多野毛片中文在线|久久久久久久久久亚洲精品|高潮又爽又黄又无遮挡免费软件|57p=ao国产成永久免费视频|在线国产欧美|九草=av | 日韩www在线观看|欧美videosfree性派对|最好看的2018中文字幕免费视频|国产一区二区三区久久精品|大地资源网在线观看免费高清观看|午夜特级毛片 | 日韩人妻无码精品=a片免费不卡|国产亚洲综合99久久系列|国产影视精品一区二区三区|午夜理论片一级毛片免费|亚洲,国产,欧美在线|久久曰视频 | 久久婷婷国产综合尤物精品|日日日噜噜噜|日本韩国欧美一级片|欧美一级二级在线观看|最新无码人妻在线不卡|国产精品入口夜色视频大尺度 | 日韩=av无码精品一二三区|免费看成年视频|亚洲精品久久久蜜桃动漫|无码VR最新无码=aV专区|97久久久久人妻精品专区|一区精品在线观看 | 蜜桃=aV少妇久久久久久高潮不断|国产精品VIDEOSSEX国产高清|亚洲成=aⅤ人片久青草影院按摩|夜色香影院|自拍视频区|超碰综合 | 色综合久久蜜芽国产精品|中国国产精品|国产黄色的视频|风间由美无打码在线观看|欧美日韩国产精品久久久久|最新中文字幕免费视频 | 国产精品久久久久久久久久久久久久久久久|免费无遮挡无码永久在线观看视频|一个人在线观看免费视频www|欧美性猛交xxxx乱大交丰满|久久无码人妻一区二区三区午夜|色欲香天天天综合网站无码 | 91成人小视频|国产精品乱码视频|日韩美女乱婬=a=a=a高清视频|www.xxxx欧美|欧美浓毛大BBwBBW|精品图区 在线观看免费v=a|国产久一|日本亚洲三级|c=aowo88国产欧美久久|能免费看的=av|97热精品视频官网 | 国产777精品精品热热热一区二区|欧美国产日韩在线播放|成人黄色在线观看视频|久久成熟|在线观看免费视频一区二区三区|欧美精品网址 | 把女人弄爽=a片免费视频|999精品免费视频|五月婷在线|高清色惰WWW日本COM|一二三区=av|永久在线观看免费视频 | 99精品视频99|麻豆水蜜桃|极品美女高潮呻吟国产剧情91|午夜一区一品日本|一个色综合久久|国产欧美久久久久久久久 | 国产不卡二区|成人国产乱码久久久久|国产精品视频一二|亚洲欧美牲交|少妇性色午夜淫片=a|真人一进一出抽搐GIF免费 | 一级毛片国产|人妻激情偷乱一区二区三区|国产网红主播无码精品|国产一区黄色|东北成人网站|一本一道=aV无码中文字幕 | 在线播放成人网站|国产真实younv在线|久久久久国色=av免费看|国产第一页线路1|国产高清免费=av在线|国产一区二区成人h动漫精品 | 亚洲精品萌白酱一区|日本二三区不卡|国产精品一二三区夜夜躁|欧美激情日韩|91啦中文在线|99精品国产丝袜在线拍国语 | 欧美久久深夜=a=a=a片|天堂黄网|性中国hd|成人免费网站入口www|国产一区激情|#NAME? | 国产在线观看免费版|干干干综合网|久久一起草|精品无人区麻豆乱码1区2区新区|一区二区在线视频|免费大黄网站 | 久久精品九九热无码免贵|日本=aⅴ精品一区二区三区|亚洲国产精品一区二区成人片|国产精品91久久|久草=av在线播放|亚洲在线www | 午夜精品久久久久久99热软件|久久一区视频|午夜精品视频在线观看|亚洲福利午夜|麻豆精产国品一二三区别网站|国产乱子伦视频在线播放 | 国产精品一区二区三区不卡视频|精品国产人成在线|成人久久秘|少妇性l交大片7724com|九色自拍蝌蚪|欧美黄动漫 | 在线=a亚洲视频播放在线观看|男女吃奶做爰猛烈紧视频|一级精品毛片|欧美一级片免费看|蜜臀久久=av|美国成人在线 | 大内密探零性|国产美女自拍小视频|久久久久久久综合狠狠综合|九九热免费精品|性=a毛片|午夜免费啪啪 | 国产亚洲精=a=a在线看|玖玖在线观看视频|国产免费内射又粗又爽密桃视频|久久99精品国产麻豆蜜芽|人妻无码一区二区视频|久久99精品久久水蜜桃 | 久久99国产一区二区三区|99热这里只有精|护士做xxxxx免费看国产|色情一区二区三区免费看|亚洲天堂精品在线|欧美极品kenn=aj=ames喷水 | 国产精品视频最多的网站|韓國三級大全久久網站|日韩推理片免费观看|60岁老女人高潮表现|日本免费专区|亚洲第一成人在线观看 | #NAME?|亚洲中文字幕无码=av在线|久久天天躁狠狠躁夜=av|91视频免费入口|午夜三级=a三级三点在线观看|国产乱码字幕精品高清=av | 日韩国产精品久久|黄=a在线|日韩视频久久|欧美亚洲日韩国产人成在线播放|超碰成人在线免费观看|欧美大屁股BBBBXXXX | 精品国产免费久久久久久桃子图片|六月婷婷久久|黄色在线观看免费视频|丰满熟妇XXXX性PPX人交|国内自拍网址|97色干 | 国产精品婷婷色综合www在线|丰满风流护士长BD=a片|国产精品福利片|农村人伦偷精品视频=a人人澡|久热免费在线视频|18禁美女黄网站色大片免费网站 |